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Introduction 
In recent years it has been observed an increasing 

interest on both theoretical and experimental research on 

the mechanism of protein adsorption at gas-liquid 

interfaces because of the potential use of bubble and foam 

columns as an economically viable means for surface-

active compounds fractionation from diluted solutions. 

The bubble and foam column for gas-liquid adsorption 

is schematically represented in Fig. 1. It works basically 

through the gas injection at the base of the column 

containing the solution. The gas bubbles formed in the 

distributor rise and along this path adsorb the solute. In 

the foam region, formed above the bubble column, it is 

made the extraction of the material of interest with a 

higher concentration [1]. 

 

 
Figure 1. Schematic representation of the gas-liquid 

adsorption process in a bubble and foam column. 

 

To have a better understanding of the processes 

involved, as well as to allow the scale up from the 

laboratory to the industrial size, mathematical and 

numerical models have been developed. Nonetheless, for 

their use, physicochemical properties and some correlated 

operational parameters must be known. For example, the 

direct determination of adsorption isotherms from 

experiments is not an easy task [1]. 

 

Inverse Problem Formulation 
The inverse problem is implicitly formulated as a finite 

dimensional optimization problem [2,3] where one seeks 

to minimize the squared residues functional 
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where 
bmeasC
r

 is the vector of measurements, 
bcalcC
r

 is the 

vector of calculated values, and P
r

 is the vector of 

unknowns. 

The inverse problem solution 
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r
 minimizes the norm 

given by Eq. (1), that is 
 

( ) ( )PS
P

mínPS
r

r

r
=*      (2) 

 

In the present research we consider different vectors of 

unknowns, P
r

, which are associated with different 

adsorption isotherms: (i) K  and B  (linear isotherm); (ii) 

)(1 TK  and â  (Langmuir isotherm); (iii) )(1 TK , 

)(2 TK , λ  and â   (two-layers isotherm). In this work, 

studying BSA, the adsorption was modeled as a two-layer 

isotherm.  

 

Inverse Problem Solution 
After training, an Artificial Neural Network (ANN) [4-

6] is able to quickly provide an inverse problem solution. 

This solution is then used as an initial guess for the 

Levenberg-Marquardt (LM) method [7]. 



Inverse Problems Symposium 2007 East Lansing, Michigan, USA 

2 

The canonical LM depends on the calculation of the 

gradient, which is usually approximated by finite 

differences. It means that the direct problem has to be 

solved many times. In this work a second ANN was 

trained to calculate the solute concentration, using the 

information on 2K , λ , â  and t . This ANN was used to 

provide an approximation for the Jacobian matrix used in 

the first step of LM iterative procedure. In the last steps 

one uses the FDM gradient approximation. 

 

Results 
In this work, it is necessary to design two different 

experiments, one to estimate )(2 TK  and â , called 

experiment 1, and another to estimate λ , called 

experiment 2. In all cases studied the sensitivity to 

)(1 TK  is low, and therefore this parameter was not 

estimated with the inverse problem solution. 

The results obtained using the ANN, LM 1 (gradient 

approximated by FDM), LM 2 (gradient approximated by 

ANN), SA and hybrid combinations, for different values 

of the standard deviation for the measurements errors,σ , 

are  shown in Tables 1 and 2.  
 

Conclusions 
The hybrid combination ANN-LM resulted in good 

estimates for the gas-liquid adsorption isotherm inverse 

problem. 

The use of the ANN to obtain the derivatives in the 

first steps of the LM method reduced the time necessary to 

solve the problem.  
 

 

Table 1 – Results obtained using ANN, LM 1, LM 2, 

SA and hybrid combinations for experiment 1. 

Case Method σ  
Time 

(s) 2K  â  
S  

[mg2/l2] 

Eq. (1) 

1 LM 1 (grad. FDM) 0 169 0.0104 0.322 0 

2 LM 2 (grad. ANN) 0 80 0.0104 0.322 0 

3 LM 1 (grad. FDM) 10 170 0.0079 0.158 8.39 

4 LM 2 (grad. ANN) 10 78 0.0081 0.157 8.64 

5 ANN 10 1 0.0110 0.377 6.81 

6 LM 1 (grad. FDM) 10 172 0.0108 0.335 6.27 

7 LM 2 (grad. ANN) 10 79 0.0106 0.314 5.68 

0.0110 0.377 
8 ANN-LM 10 80 

0.0106 0.335 
5.68 

The exact values used are: %)/(0104.0
2

2 wtmmgK =  and 

mgmâ /322.0 2= . 

10=σ  corresponds to errors up to 5% in the 

experimental data. 

 

 

 

Table 2 – Results obtained using ANN, LM 1, LM 2, 

SA and hybrid combinations for experiment 2. 

Case Method σ  λ  
Time 

(s) 

S  

[mg2/l2] 

 Eq. (1) 

1 LM 1 (grad. FDM) 0 1.117 40 0 

2 LM 2 (grad. ANN) 0 1.117 29 0 

3 LM 1 (grad. FDM) 0.1 1.159 45 7.96 

4 LM 2 (grad. ANN) 0.1 1.159 30 7.96 

5 ANN 0.1 1.432 1 202.9 

6 LM 1 (grad. FDM) 0.1 1.159 6 7.96 

7 LM 2 (grad. ANN) 0.1 1.159 4 7.96 

1.432 
8 ANN-LM 0.1 

1.159 
5 7.96 

The exact value used is: mgm /117.1 2=λ . 

1.0=σ  corresponds to errors up to 5% in the 

experimental data.  
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